Journal Article

Reconstructing the phylogeny and evolutionary history of freshwater fishes (Nemacheilidae) across Eurasia since early Eocene

Šlechtová, V,B., Dvořák, T., Freyhof, J., Kottelat, M., Levin, B., Golubtsov, A., Šlechta, V. and Bohlen, J.

Record Number:
6964
Year:
2025
Journal:
eLife
Pages:
1-23
Volume:
13:RP101080
Abstract:
Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time. In this important study, the authors reconstruct the evolutionary history of a large and widespread group of freshwater fishes (Nemacheilidae) across Eurasia since the early Eocene, based on molecular phylogenetic analysis with very comprehensive samplings including 471 specimens belonging to 250 living species. The authors convincingly infer that range expansions of the family were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes, adding to our understanding of the effects of climatic change on biodiversity during the Cenozoic
Times Cited:
0