Journal Article

They like to move it (move it): walking kinematics of balitorid loaches of Thailand

Crawford, C.H., Webber-Schultz, A., Hart, P.B., Randall, Z.S., Cerrato-Morales, C., Kellogg, A.B., Amplo, H.E., Suvarnaraksha, A., Page, L.M., Chakrabarty, P. and Flammang, B.E.

Record Number:
5793
Year:
2022
Journal:
Jounal of Experimental Biology
Pages:
1-13
Volume:
225:jeb242906
Abstract:
Balitorid loaches are a family of fishes that exhibit morphological adaptations to living in fast flowing water, including an enlarged sacral rib that creates a ‘hip’-like skeletal connection between the pelvis and the axial skeleton. The presence of this sacral rib, the robustness of which varies across the family, is hypothesized to facilitate terrestrial locomotion seen in the family. Terrestrial locomotion in balitorids is unlike that of any knownfish: the locomotion resemblesthat of terrestrial tetrapods. Emergence and convergence of terrestrial locomotion from water to land has been studied in fossils; however, studying balitorid walking provides a present-day natural laboratory to examine the convergent evolution of walkingmovements.We tested the hypothesis that balitorid species with more robust connections between the pelvic and axial skeleton (M3 morphotype) are more effective at walking than species with reduced connectivity (M1 morphotype).We predicted that robust connections would facilitate travel per step and increase mass support duringmovement.We collected high-speed video ofwalking in seven balitorid species to analyze kinematic variables. The connection between internal anatomy and locomotion on land are revealed herein with digitized video analysis, μCT scans, and in the context of the phylogenetic history of this family of fishes. Our species sampling covered the extremes of previously identified sacral rib morphotypes, M1 and M3. Although we hypothesized the robustness of the sacral rib to have a strong influence on walking performance, there was not a large reduction in walking ability in the species with the least modified rib (M1). Instead, walking kinematics varied between the two balitorid subfamilieswith a generallymore ‘walk-like’ behavior in the Balitorinae and more ‘swim-like’ behavior in the Homalopteroidinae. The type of terrestrial locomotion displayed in balitorids is unique among living fishes and aids in our understanding of the extent towhich a sacral connection facilitates terrestrial walking.
Times Cited:
1
Related Records:
Kottelat, M. (1988)
Two species of cavefishes from northern Thailand in the genera Nemachilus and Homaloptera (Osteichthyes, Homalopteridae)
Kottelat, M. (1998)
Homaloptera yuwonoi, a new species of hillstream loach from Borneo, with a new generic name for H. thamicola (Teleostei: Balitoridae)
Deharveng, L. and Bedos, A. (2001)
Thailande
Borowsky, R.L. and Vidthayanon, C. (2001)
Nucleotide diversity in populations of balitorid cave fishes from Thailand
Trajano, E., Mugue, N., Krejca, J., Vidthayanon, C., Smart, D. and Borowsky, R. (2002)
Habitat, distribution, ecology and behaviour of cave balitorids from Thailand (Teleostei: Cypriniformes)
Prokofiev, A.M. (2010)
Morphological classification of loaches (Nemacheilinae)
Kottelat, M. (2012)
Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei)
Brancelj, A., Boonyanusith, C., Watiroyram, S. and Sanoamuang, L. (2013)
The groundwater-dwelling fauna of Southeast Asia
Lujan, N.K. and Conway, K.W. (2015)
Life in the fast lane: A review of rheophily in freshwater fishes
Flammang, B.E., Suvarnaraksha, A., Markiewicz, J. and Soares, D. (2016)
Tetrapod-like pelvic girdle in a walking cavefish
Sherwin, F. (2016)
Wall-climbing cave fish: Evolutionary intermediate?
Zimmer, C. (2016)
Researchers find fish that walks the way land Vertebrates do
Anonymous (2018)
New walking cavefish study explores origins of quadrapedal walking
Anonymous (2018)
First steps. Scientists launch evolutionary study to explore the origins of fish that walk
Anonymous (2018)
New walking cavefish study explores origins of quadrapedal walking
Ellis, M. (2018)
The recorded fauna of the limestone caves of Thailand to April 2018
Liew, J.H., Chua, K.W.J., Arsenault, E.R, Thorp, J.H., Suvarnaraksha, A., Amirrudin, A. and Yeo, D.C.J. (2019)
Quantifying terrestrial carbon in freshwater food webs using amino acid isotope analysis: Case study with an endemic cavefish
Willis, J., Burt de Perera, T., Newport, C., Poncelet, G., Sturr, C.J. and Thomas, A. (2019)
The structure and function of the sucker systems of hill stream loaches
Crawford, C.H., Randall, Z.S., Hart, P.B., Page, L.M., Chakrabarty, P., Suvarnaraksha, A. and Flammang, B.E. (2020)
Skeletal and muscular pelvic morphology of hillstream loaches (Cypriniformes: Balitoridae)
Ellis, M. (2020)
The caves of northern Thailand
Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z. and Wei, L. (2020)
Study of Asia's hillstream loaches reveals keys to fish family's land-walking abilities
Crawford, C.H. (2021)
These fish were made for walking: morphology and walking kinematics in balitorid loaches
Crawford, C.H., Webber-Schultz, A., Hart, P.B., Randall, Z.S., Cerrato-Morales, C., Kellogg, A.B., Amplo, H.E., Suvarnaraksha, A., Page, L.M., Chakrabarty, P. and Flammang, B.E. (2022)
They like to move it (move it): walking kinematics of balitorid loaches of Thailand
Flammang, B.E. (2022)
Bioinspired design in research: Evolution as beta-testing